性别: 男
职称:副教授
导师类型: 硕士生导师
学科方向:071004-水生生物学
研究方向
水生无脊椎动物先天免疫与病原感染的关系
水体环境胁迫与水生动物病害的联系
个人经历
中山大学 赌博app 生物科学 学士 2008.08-2012.06
中山大学 赌博app 水生生物学 博士 2012.09-2017.06
中山大学 海洋科学学院 博士后 2017.07-2019.06
中山大学 海洋科学学院 专职科研系列特聘研究员 2019.08-2022.07
中山大学 赌博app 副教授 2023.02至今
学术成就
主要从事对虾抗病毒和抗细菌免疫研究。对虾是我国重要的水产动物养殖种类,2021年我国对虾养殖产量超过227万吨,位居世界第一。我国对虾养殖业经历过两次重大危机,均由病害导致。第一次危机是由白斑综合征病毒(WSSV)引发,曾导致我国养殖对虾损失70%。第二次危机是弧菌等多种条件致病菌引发的细菌性疾病,曾导致全球损失23%,我国损失17%。本人针对对虾病毒和细菌性疾病开展抗病毒和抗细菌先天性免疫研究,取得了具有原创性的研究成果。
一、揭示了对虾Toll介导的抗WSSV免疫新通路,挖掘了对虾p53调控Toll通路的新机制
干扰素通路是对虾中发现的第一条抗病毒通路,本人挖掘出第二条对虾抗病毒(WSSV)途径。Toll是进化保守的模式识别受体,研究发现了WSSV特异性识别受体Toll4,阐明了Toll4通过Dorsal诱导抗脂多糖因子(ALF)家族和溶菌酶(LYZ)家族蛋白表达的调控机制,揭示了ALF和LYZ通过结合病毒囊膜蛋白发挥清除病毒功能。研究成果在病原学顶级期刊PLoS Pathogens杂志上发表,他引60次。抑癌基因p53参与肿瘤形成、免疫应答等生命过程。本人阐明了对虾p53通过与Dorsal互作调控Toll通路的新机制,首次证明无脊椎动物p53参与先天免疫。Cell综述文章“Putting p53 in Context”评述该成果,指出p53在进化上参与先天免疫调控要早于抑制肿瘤发生。
二、发现了对虾STING介导的抗弧菌免疫新途径
病毒和细菌感染宿主过程中暴露出双链DNA能够激活先天免疫。Toll家族TLR9最早被鉴定为DNA识别受体,但不是DNA识别应答的必要条件。最新研究表明cGAS-STING通路识别病原性双链DNA启动免疫应答,是DNA激活免疫的主要途径。本人发现了对虾STING介导的抗弧菌免疫新途径,阐明了STING-IKKβ-Relish诱导抗菌肽表达的调控机制,率先证明无脊椎动物STING参与抗细菌免疫。Cell子刊Trends in Immunology综述文章“Evolutionary Origins of cGAS-STING Signaling”评述该成果,指出STING介导NF-κB途径的保守性及可能的功能演化历程将成为未来研究的重点。
承担课题
国家自然科学基金面上项目,凡纳滨对虾干扰素调节因子(LvIRF)调控鳃排氨的分子机制,32173000,58万,国家级,2022.1-2025.12,主持。
国家自然科学基金青年基金,凡纳滨对虾TRAF3激活IRF机制及抗病毒效应,31802326,25万,国家级,2019.1-2021.12,主持。
中国博士后科学基金面上资助,凡纳滨对虾STING介导IRF激活的抗病毒分子机制,2017M622850,5万,省部级,2018.1-2019.6,主持。
广州市科技计划项目基础与应用基础研究项目(博士青年科技人员类),凡纳滨对虾IL-1R介导抗细菌途径的激活机制的研究及应用,202102020354,5万,市级,2021.04-2023.03,主持。
高校基本科研业务费,WSSV感染凡纳滨对虾拮抗TRAF3抗病毒途径的分子机制,20lgpy55,8.31万,校级,2020.1-2021.12,主持。
论文专著
Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. Z Liu#, J Zheng#, H Li#, K Fang, S Wang, J He, D Zhou, S Weng, M Chi, Z Gu, ... BMC genomics 25 (1), 746, 2024.
Nucleic Acid Sensing by STING Induces an IFN-like Antiviral Response in a Marine Invertebrate. H Li, X Di, S Wang, Q Li, S Weng, J He, C Li. The Journal of Immunology, 2024.
Ammonia nitrogen stress increases susceptibility to bacterial infection via blocking IL-1R–Relish axis mediated antimicrobial peptides expression in shrimp. H Li, Q Li, S Wang, J He, C Li. Aquaculture 563, 738934, 2023.
The MIP-T3 from shrimp Litopenaeus vannamei restricts white spot syndrome virus infection via regulating NF-κB activation. H Li, Q Li, S Wang, J He, C Li, Fish & Shellfish Immunology 127, 56-64, 2022.
Stimulator of interferon genes (STING) defends against bacterial infection via IKKβ-mediated Relish activation in shrimp. H Li, Q Li, S Wang, J He, C Li. Frontiers in Immunology, 4678, 2022.
TNF-Receptor-Associated Factor 3 in Litopenaeus vannamei Restricts White Spot Syndrome Virus Infection Through the IRF-Vago Antiviral Pathway. H Li, Q Fu, S Wang, R Chen, X Jiang, P Zhu, J He, C Li. Frontiers in Immunology 11, 2110, 2020.
RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. H Li, B Yin, S Wang, Q Fu, B Xiao, K Lǚ, J He, C Li. PLoS pathogens 14 (9), e1007109, 2018.
An invertebrate STING from shrimp activates an innate immune defense against bacterial infection. H Li, S Wang, K Lǚ, B Yin, B Xiao, S Li, J He, C Li. FEBS letters 591 (7), 1010-1017, 2017.
Identification of two p53 isoforms from Litopenaeus vannamei and their interaction with NF-κB to induce distinct immune response. H Li, S Wang, Y Chen, K Lǚ, B Yin, S Li, J He, C Li. Scientific reports 7 (1), 45821, 2017.
MKK6 from pacific white shrimp Litopenaeus vannamei is responsive to bacterial and WSSV infection. H Li, S Wang, Z Qian, Z Wu, K Lǚ, S Weng, J He, C Li. Molecular immunology 70, 72-83, 2016.
A C-type lectin (LvCTL4) from Litopenaeus vannamei is a downstream molecule of the NF-κB signaling pathway and participates in antibacterial immune response. H Li, Y Chen, M Li, S Wang, H Zuo, X Xu, S Weng, J He, C Li. Fish & shellfish immunology 43 (1), 257-263, 2015.
Intestine bacterial community affects the growth of the Pacific white shrimp (Litopenaeus vannamei) . D Hou, B Yin, S Wang, H Li, S Weng, X Jiang, H Li, C Li, J He, Z Huang. Applied Microbiology and Biotechnology 108 (1), 59 2024.
Nitrite nitrogen stress disrupts the intestine bacterial community by altering host-community interactions in shrimp. D Hou, H Li, S Wang, S Weng, J He. Science of The Total Environment 925, 171536,2024.
Signaling events induced by lipopolysaccharide-activated Toll in response to bacterial infection in shrimp. S Wang, H Li, Q Li, B Yin, S Li, J He, C Li. Frontiers in Immunology 14, 1119879,2023.
An AhR–Caspase Axis Mediated Antiviral Apoptosis in an Arthropod. Q Fu, H Li, S Wang, X Liao, S Chen, B Xiao, R Chen, X Jiang, J He, C Li, The Journal of Immunology 209 (10), 2022.
Rap2a is negatively regulated by NF-κB and contributes to growth via wnt pathway in shrimp. S Wang, M He, Q Li, H Li, B Yin, J He, C Li, Frontiers in Marine Science 9, 942009, 2022.
Interferon-Induced Protein 6-16 (IFI6-16) from Litopenaeus vannamei Regulate Antiviral Immunity via Apoptosis-Related Genes. K Lǚ, H Li, S Wang, A Li, S Weng, J He, C Li, Viruses 14 (5), 1062, 2022.
TAK1 confers antibacterial protection through mediating the activation of MAPK and NF-κB pathways in shrimp. S Wang, H Li, R Chen, X Jiang, J He, C Li. Fish & shellfish immunology 123, 248-256, 2022.
Phenylalanine hydroxylase (PAH) plays a positive role during WSSV and Vibrio parahaemolyticus infection in Litopenaeus vannamei. Y Yao, L Shi, W Xiao, S Guo, S Liu, H Li, S Zhang. Fish & Shellfish Immunology 120, 515-525, 2022.
MAPKKK15 gene from shrimp litopenaeus vannamei is transcribed in larva development stages and contributes to WSSV pathogenesis. S Wang, H Li, P Zhu, Q Fu, B Yin, Q Li, R Chen, X Jiang, S Weng, J He, ...Aquaculture 534, 736324, 2021.
White spot syndrome virus establishes a novel IE1/JNK/c-Jun positive feedback loop to drive replication. S Wang, H Li, S Weng, C Li, J He, Iscience 23 (1), 2020.
Molecular cloning, expression, promoter analysis and functional characterization of a new Crustin from Litopenaeus vannamei. M Li, C Ma, H Li, J Peng, D Zeng, X Chen, C Li. Fish & shellfish immunology 73, 42-49, 2018
MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response. S Wang, B Yin, H Li, B Xiao, K Lǚ, C Feng, J He, C Li, Developmental & Comparative Immunology 78, 61-70, 2018.
Shrimp TAB1 interacts with TAK1 and p38 and activates the host innate immune response to bacterial infection. S Wang, M Li, B Yin, H Li, B Xiao, K Lǚ, Z Huang, S Li, J He, C Li. Molecular Immunology 88, 10-19, 2017.
Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-κB and JNK pathways and its broad protective roles …. C Li, H Li, B Xiao, Y Chen, S Wang, K Lǚ, B Yin, S Li, J He. Developmental & Comparative Immunology 70, 45-58, 2017.
Shrimp with knockdown of LvSOCS2, a negative feedback loop regulator of JAK/STAT pathway in Litopenaeus vannamei, exhibit enhanced resistance against WSSV. S Wang, X Song, Z Zhang, H Li, K Lǚ, B Yin, J He, C Li, Developmental & Comparative Immunology 65, 289-298,2016.
Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei. S Zhang, L Shi, K Lǚ, H Li, S Wang, J He, C Li, Fish & shellfish immunology 54, 411-418,2016.
Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. S Wang, H Li, K Lǚ, Z Qian, S Weng, J He, C Li, Fish & shellfish immunology 52, 278-288, 2016.
Identification and characterization of MKK7 as an upstream activator of JNK in Litopenaeus vannamei. S Wang, Z Qian, H Li, K Lǚ, X Xu, S Weng, J He, C Li, Fish & Shellfish Immunology 48, 285-294, 2016.
Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. C Li, H Li, Y Chen, Y Chen, S Wang, SP Weng, X Xu, J He. Scientific reports 5 (1), 15078, 2015.
Identification and functional characterization of the TAB2 gene from Litopenaeus vannamei. S Wang, H Li, Z Qian, X Song, Z Zhang, H Zuo, X Xu, S Weng, J He, C Li. Fish & Shellfish Immunology 46 (2), 206-216, 2015.
The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection. C Li, H Li, S Wang, X Song, Z Zhang, Z Qian, H Zuo, X Xu, S Weng, J He. Developmental & Comparative Immunology 52 (1), 26-36, 2015.
Daxx from Pacific white shrimp Litopenaeus vannamei is involved in activation of NF-κB pathway. M Yan, J Tang, Q Liang, G Zhu, H Li, C Li, S Weng, J He, X Xu, Fish & shellfish immunology 45 (2), 443-453, 2015.
A Janus Kinase in the JAK/STAT signaling pathway from Litopenaeus vannamei is involved in antiviral immune response. X Song, Z Zhang, S Wang, H Li, H Zuo, X Xu, S Weng, J He, C Li. Fish & Shellfish Immunology 44 (2), 662-673, 2015.
Identification of a JAK/STAT pathway receptor domeless from Pacific white shrimp Litopenaeus vannamei. M Yan, C Li, Z Su, Q Liang, H Li, S Liang, S Weng, J He, X Xu. Fish & Shellfish Immunology 44 (1), 26-32, 2015.
Identification and functional analysis of a Hemolin like protein from Litopenaeus vannamei. H Zuo, H Li, E Wei, Z Su, J Zheng, C Li, Y Chen, S Weng, J He, X Xu. Fish & Shellfish Immunology 43 (1), 51-59, 2015.
Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei. M Li, C Li, C Ma, H Li, H Zuo, S Weng, X Chen, D Zeng, J He, X Xu. Developmental & Comparative Immunology 46 (2), 231-240, 2014.
Pellino protein from pacific white shrimp Litopenaeus vannamei positively regulates NF-κB activation. C Li, J Chai, H Li, H Zuo, S Wang, W Qiu, S Weng, J He, X Xu. Developmental & Comparative Immunology 44 (2), 341-350, 2014.
Presence of Tube isoforms in Litopenaeus vannamei suggests various regulatory patterns of signal transduction in invertebrate NF-κB pathway. C Li, Y Chen, S Weng, S Li, H Zuo, X Yu, H Li, J He, X Xu. Developmental & Comparative Immunology 42 (2), 174-185, 2014.